第247章 完全体:人工智能+量子计算机!

 4月,因为登顶夏国首富,李易深居简出,不是去学校就是在别墅。

 也不是什么都没做,他整理了很多记忆中,前世看到的各种数据资料。

 比如谷歌人工智能芯片:tpu(tensor processing unit),张量处理器。

 这是财大气粗的谷歌,针对机器学习算法而专门制作,一款训推一体的Ai芯片。

 如果说Cpu,gpu是比较万能的工具,那么tpu就是专用工具。

 tpu就是谷歌专门为加速深层神经网络运算能力而研发的一款芯片。

 它有更高效能的深度机器学习能力。

 据说,tpu与同期的Cpu和gpu相比,可以提供15-30倍的性能提升,以及30-80倍的效率(性能/瓦特)提升。

 每一个操作需要更少的晶体管,用更多精密且大功率的机器学习模型,并快速应用这些模型,因此用户便能得到更正确的结果。这就是tpu。

 在李易的记忆中,谷歌最新发布的tpu 芯片,包含1个张量核心,每个张量核心有4个矩阵乘法单元、1个向量单元和1个标量单元。

 较比上一代产品,每美元可提供高达2倍的训练性能。

 对于大型语言模型和生成式Ai模型,每美元可提供2.5倍的推理性能。

 成本却不到上一代的一半。

 最新上线的tpu支持多达256个芯片互连,总带宽超过400tb/s,int8性能达到100petaops,从而解决更复杂的计算任务。

 Ai模型的参数数量以每年10倍的速度增长。

 而芯片性能每年最多增长2~3倍,单芯片性能增长根本撑不住。

 所以,必须通过集群扩展和稀疏化模型来应对飙涨的算力需求。

 传统的设计和构建计算基础设施的方式,无法满足生成式Ai和大型语言模型指数级的增长需求。

 这就需要做许多事情,将tCo性能提升几十倍、数百倍!

 李易不是这方面的专家,他只是看过相关的报道。

 星海半导体也不是直接抄袭,而是做相关的研究,彻底消化这方面的东西。

 至少有一点可以确定。

 就是有了一个确切的研究方向,能少走很多弯路。

 商兵华的加入,能将星海半导体的人工智能芯片提速!

 除此之外,还有软件方面的研究。

 这方面李易自己就懂得比较多。

 结合起来,能大大提升人工智能技术的研究速度。

 “这段时间,我们已经敲定了各方面的研究项目……从半导体原材料,到芯片设计、生产制造设备,都已经整理出来!”